
[2011年秋田大]

n 次の文章中の (\mathbf{r}) については ①~③ のうち正しいものを 1 つ選び, \mathbf{r} ~ \mathbf{r} に適切な数式または数値を入れよ。

X線を物質に当てると、散乱された X線の中に入射した X線と波長が同じ X線のほか、それよりも長い波長の X線が観測される。この現象を (ア ① ブラッグ反射、② 光電効果、③ コンプトン効果) といい、X線が波動の性質だけでなく、粒子の性質をもつと考えることで説明できる。アインシュタインによると振動数 ν の光はプランク定数 h を用いて、エネ

ルギーE= \boxed{T} , 光速を c として光の進む方向に運動量 $p=\frac{E}{c}$ をもつ粒子 (光子) の集まりとみなせる。このため,波長 λ の X 線の光子は,エネルギー $E=\frac{hc}{\lambda}$ と運動量 $p=\frac{h}{\lambda}$ をもつと考えられる。この光子が物質中で静止している質量 m の電子と衝突し,図のように同一平面上で光子が角 θ の方向に散乱され,電子は角 ϕ の方向に散乱されるとする。衝突が弾性的なら,衝突の前後で両者のエネルギーの和と運動量の和は保存される。衝突後の電子の速さを v , 衝突後の X 線の波長を λ' とすると,エネルギーの保存から, $\frac{hc}{\lambda}=$ $\boxed{ }$ が成りたつ。また,運動量の保存から図の x 軸方向に対して, $\frac{h}{\lambda}=$ $\boxed{ }$ が成りたつ。 ϕ を消去し,散乱された電子の運動エネルギーを求めると,m, λ , λ' , h, θ を用いて, $\frac{1}{2}mv^2=$ $\boxed{ }$ となる。さらに v を消去し, λ' 与 λ として近似すると $\lambda'-\lambda=\frac{h}{mc}(1-\cos\theta)$ が得られる。この式を用いると,波長が 7.0×10^{-11} m の X 線を物質に入射させたとき,角度 $\theta=90^\circ$ の方向に散乱された X 線に含まれる長い波長は $\boxed{ }$ $\boxed{ }$ $\boxed{ }$ $\boxed{ }$ か数字 2 $\boxed{ }$ $\boxed{ }$